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Motto of NEML 

Electrochemical technologies 
4E + E 

Energy problem                    Environmental  pollution 

Enjoy life 

Solve Reduce 

To cultivate Elites for the society. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Chemical Power Sources 
• Supercapacitors 
• Polysulfide bromide battery (PSB) 
• Zn/Br battery 
• Vanadium redox couples (VRC) 
• Sodium sulfur battery (Na/S) 
• Lead acid battery 
• Metal-air battery 
• Ni-MH 
• Lithium ion battery 

• Safety 
• Rate capability 
• Energy density 
• Energy efficiency 
• Cycling life 
• Maintenance  
• Capital cost for kWh 
• Per-cycle cost 

• Aqueous rechargeable lithium battery (ARLB) 
• …… 
2nd Symposium on Energy Storage and Power Batteries, Chengdu, 11-14 Nov., 

2007 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Characteristics of lithium ion batteries:  
 
• High output voltage (average 3.6V) and power 
• High energy density  (UR18650: >500 Wh/dm3, >200Wh/kg) 
• Low self discharge (<10%/month) 
• No memory effect 
• Long cycle life (>1000 times) 
• High rate capability (1C) 
• High coulomb efficiency (near 100% except in the 1st cycle) 
• Easy to measure the residual capacity 
• Maintenance free 
• No environmental pollution (green battery) 
• Wide work temperature (-25 - +45oC, extended to –40 – 
70oC) 

Lithium Ion Batteries 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Main Materials for Lithium Ion Batteries 

• Anode material 
• Cathode material 
• Electrolyte  
• Separator 

Anode       Cathode 

Electrolyte 

Separator 

Inner safety 

Energy 
Storage 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Safety during Abuse  
Field Failure 
– Manufacturing defects 
• Loose connection, separator 
damage, foreign debris 
• Can develop into an internal 
short circuit 
• Can lead to overheating and thermal 
runaway 
Abuse Failure 
– Mechanical 
   • crush, nail penetration 
– Electrical 
   • short circuit, overcharge 
– Thermal 
   • thermal ramp, simulated fire 

A123: PHEV 
(Jun. 2008) 

(April. 2011) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One conclusion @5th China-U.S. Electric 
Vehicle and Battery Technology Workshop 

• Safety & reliability for lithium ion batteries is the challenging 
problems for electric vehicles. 
 

• Gel lithium ion batteries (GLIBs) is surely the true choice as 
power source for EVs.  
 

GMs: Self-distinguishing 

Safety time: Another importance 

Full charge and then put on electric 
oven: at least 1 min and 10 
seconds (even for C//LiCoO2) to 
escape when EVs are on fire. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Li//Air 

• Conductors of low ionic conductivity  
• Low stability: reaction with Li2O2 
• Low O2 solubility 
• Low Li2O2 solubility 
• Narrow temperature 
• High overpotentials 
• Low energy efficiency 
• Low practical energy density 
• Sensitive to the environment 
• … …  

Challenging problems 

Prof. Deyang Qu @5th China-U.S. Electric Vehicle and Battery 
Technology Workshop, 17-18 April, 2012 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Li//S 
• Li ??? 
    Nobody should forget the story of MoLi 

Company (Li//MoS2). 

• MoS2 is more reliable than S. 
• Lithium dendrite is the main safety issue 
instead of S. 
• Low volumetric energy density. 

Some facts: 

There is still quite some distance to go. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

New Power sources 

Cheap: Lead acid has the largest market 

Green: The ultimate goal of electrochemists 

Neutral aqueous solutions. 

Power density: Very high 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What is ARLB ?  

• Lithium intercalation compound(s) as one or 
both electrodes 

• Redox reactions instead of absorption/ 
desorption  

• Aqueous lithium-containing solution as 
electrolyte 

Definition:  

Why not called as aqueous lithium ion batteries:  
Misunderstanding: Aqueous to replace organic ??? 
Scope: Very narrow   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

W. Li, J. R. Dahn, D. Wainwright, Science, 264, 1115 (1994). 

Poor cycling. 

LiMn2O4//VO2(B) 

2. Aqueous rechargeable 
lithium battery (ARLB) 

Possibility 
and 
availability. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

J. Glanz, Science, 264, 1084 (1994). 

Comments 

Since our first 
publication on 
ARLBs in Angew. 
Chem. Int. Edi. 
in 2007, Stanford 
Univ., Kyushu 
Univ. and the like 
show great 
interest. 

Our reply: not “maybe” but  “sure”. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Cathode: LiCoO2 
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      (a) In saturated Li2SO4 aqueous              (b) In organic LIB 315  

Similar behavior including phase transitions. 
DLi+ = 1.649 x 10-10 cm2/s 

Wu et al., Angew. Chem. Int. Ed., 46, 295 (2007); Electrochim. Acta, 52, 4911 (2007).  

De-intercalation and intercalation of LiCoO2 in aqueous and organic solutions. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nanostructured LiCoO2 

LiCoO2 from traditional solid-
state reaction in aqueous 
electrolytes: Results from 
Stanford University. 

Very good charge-discharge 
behavior for high power density. 

Full charge: < 1 min. 

Our nano 
LiCoO2 

Wu et al., Electrochem. Commun. 11 (2010) 1524. 

Fast kinetics 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)In organic LIB 315                         (b) In 2 M Li2SO4 aqueous  

LiMn2O4: cheap 
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Similar intercalation and deintercalation behavior in organic 
and aqueous electrolytes. 
Satisfactory at high scan rate, indicating great promise for application at 
high current density for aqueous electrolyte. 
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Wu et al., Funt. Mater. Lett., 3 (2010) 151. 

Fast kinetics 
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PS template 
(1) Macroporous 

(2) Nanograin (3) High crystallinity 
Wu et al., Energ. Environ. Sci., 2011, 43985 (Feature article). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (a)  Solid-LiMn2O4                                            (b) Porous-LiMn2O4 
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CVs in 0.5 mol l-1 Li2SO4 aqueous solution. 

Electrode: 80% active material, 10% conductive agent and 10% binder. 

Ultra-fast kinetics 
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The transportation process in 
porous LiMn2O4 electrode will be 
more facile. 

Porous LiMn2O4: 118 mAh/g 

Solid LiMn2O4: 85 mAh/g 

Fig. Nyquist plots by using Ni 
mesh as the counter 
electrodes. 

Fig. Charge-discharge curves at 
100 mA/g for the initial 3 cycles. 
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Fig. Charge-discharge at different 
current density. 

Fig. Capacity at different current 
density. 

In the case of porous LiMn2O4, 
capacity retention is 76% at the charge 
current density of 10000 mA/g. 
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The discharge curves of porous when it was 
fully charged at 100 mA/g): Capacity retention 
of 95% at 10000 mA/g. 

Charge at 10000 mA/g and then 
kept at 1.29 V (NHE) until 
current goes to 100 mA/g. 

Full charge: < 2.4 mins. 

Porous LiMn2O4 

Ultra-fast kinetics: much faster than in organic electrolytes. 
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Excellent cycling behavior 

100 nm100 nm

TEM of porous LiMn2O4 
after 10000 cycles. 

Stable morphology and crystal structure after 10000 cycles. 

Good crystal, nano grain and porous structure 
No acid: pH ~7 

Oxygen: not removed 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nanochain LiMn2O4: Super-fast 
charge capability 
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Super-fast charge performance 

Wu et al., Electrochem. Commun., 13 (2011) 205.  

24 seconds: 84.1% 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NEML, Fudan Uni. 

LiMn2O4 nanorod : Super-fast 
charge capability 
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Super-fast charge kinetics: 40 sec (90%) 

Wu et al., Electrochem. Commun., 13, 1159 (2011).  
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2.2 Anode: PPy@(V2O5+CNTs) 

SEM micrograph of the virginal hybrid of V2O5 with MWCNTs 
and TEM micrographs of the coated hybrid. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Electrochemical performance of the virginal and the coated hybrids 
and the prepared ARLB: (a) cyclic voltammograms, (b) charge and 
discharge curves, (c) charge and discharge curves of the ARLB 
together with those of LiMn2O4 and the coated hybrid, and (d) 
cycling behavior. 

Wu et al., J. 
Mater. 
Chem., 2012, 
22, in press 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anode: PPy@MoO3 
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PPy@MoO3//LiMn2O4 
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(c) The energy density of this ARLB is 45 
Wh/kg (lower than the estimated value, 
about 55 Wh/kg) at 350 W/kg and even 
maintains at 38 Wh/kg at 6 kW/kg. This 
kind of excellent rate capability can be 
compared with supercapacitors. 

Wu et al., Energy Environ. Sci., 5, 6909 (2012). 

(Top 10 most-read EES article) 

Super-fast: < 36 sec  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison of Filling (charge) Time 

Filling gasoline 1-3 mins  (Full) 

Filling natural gas 3-5 mins (full, fast) 

Lithium ion 
batteries 

> 10 min (<80%) 

ARLBs < 1 min (>90%) 

Note: For average size vehicle. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Advantages of ARLBs 
 Easy to produce 
 Good availability of lithium salts 
 High ionic conductivity, about 1-2 orders of magnitude higher than organic 
electrolyte, suitable for charge and discharge at high rate 
 High power density 
 Good safety, no combustibility or explosion 
 Low cost for production due to no requirements on the content of moisture 
 Low requirements on separators especially the shut-down performance 
 Friendly to environment, completely GREEN 
 Satisfactory  energy density 40- 90 Wh/kg for the total electrodes 
 Super-fast charge capability 
 Excellent cycling behavior  

Good promising for energy storage, HEVs, assistance for EVs and range-
extenders. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. New ARLBs:  
EVs for long distance 

P.G. Bruce et al., Nat. Mater., 11, 19 (2012). 

??? No idea so far 

High voltage cathode ??? 
Li-rich cathode ??? 
Si anode ???  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Li metal is not stable in water !!! 
Li + H2O = LiOH + H2 

Fire(火) 

Earth(土) 

Wood(木) 

Metal (金) 

Water(水) 

Incompatible Compatible 

Traditional Theory of the Five Elements  

LiMOx 

Lithium metal  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To make fire compatible with water 

Water(水) Fire(火) Wood(木) 

Lithium metal  GPE + LISICON LiMn2O4 

Target: Polymers 
             No LISICON (earth) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARLBs of High Energy Density 
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ARLB of Li//LiMn2O4  
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 Fast kinetics:  
Small overpotential 
  
 High energy/power 

efficiency:  
>95% (very rare)  
 
 Good cycling:  
No evident capacity 

fading 
 
 Stable lithium metal: 
No chance of lithium 

dendrite  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

High energy density 

ARLB Calculated 
energy 
density 

50% 
utilization 
based on 
LIBs 

Possible 
practical 
energy 
density 

Li//LiMn2O4 446 Wh/kg 50% > 220 Wh/kg 

Li//NCM > 600 Wh/g 50% > 300 Wh/kg 

In aqueous electrolyte: At least 3 times thicker electrode pellets.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advantage of the New ARLBs 
  Good safety and reliability: an effective (close contact 

with the anode) cooling system (aqueous)  
  Benign to environment: much green (no LiPF6) 
  High energy density: > 600 Wh/kg based on the mass of 

the electrode materials, and > 300 Wh/kg for practical 
value 

  High coulomb efficiency: near 100% except for the 
initial cycles 

  Fast redox kinetics for the electrodes: small 
overpotentials & superfast charge 

  High energy/power efficiency: > 95%  
  No memory effects  
  Excellent cycling life: > 10000 cycles 
  Low cost … …   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Summary 

• Nanomaterials greatly promote the development of 
ARLBs (aqueous rechargeable lithium batteries) 
including reversible capacity, rate capability and 
cycling behavior.  

     
• New designed ARLBs open a great future for energy 

storage including EVs and smart grids in the near 
future. 
 

• Social sciences are good to develop natural sciences: 
life enjoyment can lead to new ideas.  

We are developing new rechargeable aqueous 
battery systems with energy density > 500 Wh/kg 
(estimated practical value). 
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Thanks for your kind attention ! 
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