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Motivation

 Global demand for transportation fuels is increasing rapidly.
– New discoveries of petroleum are not keeping pace.

 Global temperatures are rising.
– CO2 from transportation is a major contributor to GHG.

 Strong motivation to reduce petroleum consumption.

 Engine-efficiency improvements offer a huge potential !
– Could be implemented in a relatively short time.

 Advanced biofuels or other renewable fuels  important part of solution.
– Substantial discussion is beyond the scope of this presentation.

From:  Transport, Energy and CO2: Moving Toward Sustainability, International Energy Agency 2009.



Improving Vehicle-Fleet Efficiency

 Diesel engine is the most efficient transportation engine ever developed.
– Potential fuel savings of ~30% over spark-ignition (SI) engines.

 Drawbacks to diesel engines:
– Diesel emissions control is challenging  requires expensive aftertreatment.
– Cost of a diesel is significantly higher than SI + expensive aftertreatment + 

demand is driving up fuel costs.

 For high-efficiency vehicles to have a large impact, it is important that
the technology be economical.  Particularly for the developing world.

 For full utilization of crude oil stocks  desirable to have a high-
efficiency engine fueled with “light-end” distillates, e.g. gasoline.

 Looking to the future, the vast 
majority of new vehicles added 
will be in the developing world.
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 Advanced engines using HCCI or HCCI-like combustion can provide both 
diesel-like or higher efficiencies and ultra-low emissions of NOX and soot.
– Potential for significantly lower cost than an emissions-compliant diesel.
– More-volatile, light-end fuels are well suited for HCCI.
– HCCI can also work well with biofuels and biofuel/gasoline blends.

 HCCI  dilute premixed charge and compression ignition.
– Volumetric flameless combustion.
– Never truly homogeneous due to natural thermal stratification (TS).
– Also advantages to adding limited mixture stratification at some conditions 

 partial fuel stratification (PFS).

Advanced High-Efficiency Engines

 Other low-T, HCCI-like concepts 
also show promise (PCCI or RCCI).

 Challenges for HCCI:
– Controlling start of combustion
– Extending operation to higher 

loads

 Fuel autoignition chemistry is 
critical for both. 



 HCCI is the most fundamental low-temperature combustion process and the 
first to be widely investigated.
– High Efficiencies  Relatively high CR = 12 – 16, no throttle, reduced heat 

losses due to low burned-gas temperatures, and higher  (depends on EGR).
– Ultra-low NOx  Lean or dilute with EGR so combustion temperatures < 1900 K
– Ultra-low soot  Well mixed

 Other low-T combustion modes rely on these same principles.
– PPC, PPCI or PCCI  originally developed to achieve HCCI-like combustion in 

diesel engines. DI fueling ~60° bTDC diesel fuel vap. & “premixed enough.”
> Still widely used with diesel fuel for low emissions at lower load  in production.
> Recently adapted to gasoline fueling as in the Lund work  better for high loads, 

but difficulties  e.g. soot, and RON 70 gasoline = new fuel to the marketplace.

– RCCI  new concept recently introduced by Reitz et al.  improves control and 
shows promise, but requires two fuels.

 HCCI is relatively well developed  GM has prototype cars operating in 
HCCI mode from idle  70 mph, using regular pump gasoline (87 octane).
– Controls  cam phasers, GDI fueling & Spark-Assist (SACI), significant strides.
– Combustion efficiencies > 96%, typically 98 – 99% for higher loads.

Low-Temperature Combustion Modes

 Active research on these low-T modes & autoig. chemistry important for all.



Sandia Dual-Engine HCCI Engine Laboratory

All-Metal 
Engine

Optical 
Engine

Optics Table

Dynamometer

Intake Plenum

Exhaust Plenum

Water & Oil 
Pumps & 
Heaters

Flame 
Arrestor

 Matching all-metal & optical HCCI research engines.
– Single-cylinder conversion from Cummins B-series diesel.

– Open combustion chamber.

Optical Engine
All-Metal Engine

 Bore x Stroke = 102 x 120 mm 
 0.98 liters, CR=14

PTDC-motored = 30 – 100 bar



Nature of HCCI Combustion

 Ignition timing is mainly controlled by fuel autoignition chemistry.
– Heat release prior to hot autoignition is kinetically controlled (LTHR, and ITHR).
– Adjustment of operating parameters required to control ignition timing.

 Main combustion HRR is primarily controlled by thermal stratification. 
– TS occurs naturally due to heat transfer and imperfect mixing with hot residuals.
– TS causes sequential autoignition & combustion of the in-cylinder charge.

> Crucial for controlling HCCI HRR for fully premixed combustion.

– High-T combustion kinetics are rapid.
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Ignition Chemistry Changes with Fuel-Type

CA50 = TDC, Fully Premixed, 1200 rpm Intake temperature (Tin) required for 
a given combustion phasing varies 
substantially with fuel type.
– Representative real-fuel 

constituents and gasoline. 

 Hot-ignition temperature also varies, 
but proportionally less than Tin.

 One main reason is that low-temp. 
heat release (LTHR, or “cool flame”) 
raises temperature for PRF80.
– 80% iso-octane + 20% n-heptane 

 However, for single-stage ignition 
fuels, early reactions also important. 
– Raise temperature to thermal 

runaway (hot-ignition point  CA10). 

– “Intermediate temp. heat release”
(ITHR) reactions.
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Intermediate Temp. Heat Release (ITHR)

 For all fuels, slower ITHR reactions 
precede hot ignition ( CA10).
– 900 < T < 1050 K

 For many single-stage fuels, trends 
are self-similar, Tig. varies with Tin. 
– Tig varies significantly with fuel-type.

 However, DIB (diisobutylene) has 
more intense ITHR reactions.

 Also, for two-stage PRF80, ITHR 
reactions more intense after LTHR.
– Note that HRR never goes to zero 

after LTHR ends.

 Examine the effects of ITHR in 
more detail for iso-octane (single-
stage) and PRF80 (two-stage)

Hwang, Dec & Sjöberg, Combst. & Flame 154(3), 2008
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Intermediate Temp. Heat Release (ITHR)

 For all fuels, slower ITHR reactions 
precede hot ignition ( CA10).
– 900 < T < 1050 K

 For many single-stage fuels, trends 
are self-similar, Tig. varies with Tin. 
– Tig varies significantly with fuel-type.

 However, DIB (diisobutylene) has 
more intense ITHR reactions.

 Also, for two-stage PRF80, ITHR 
reactions more intense after LTHR.
– Note that HRR never goes to zero 

after LTHR ends.

 Examine the effects of ITHR in 
more detail for iso-octane (single-
stage) and PRF80 (two-stage)

Hwang, Dec & Sjöberg, Combst. & Flame 154(3), 2008



10

20

30

40

50

60

70

80

90

350 355 360 365 370 375 380
Crank Angle [° aTDC Intake]

C
yl

in
d

er
 P

re
ss

u
re

 [
b

ar
]

Experiment, Phi=0.3, 360°CA
Experiment, 365°CA
Experiment, 369°CA

0

2

4

6

8

10

12

14

358 360 362 364 366 368 370 372 374 376 378
50% Burn Point [°CA aTDC]

R
in

g
in

g
 In

te
n

si
ty

 [M
W

/m
2]

Phi = 0.30

Ringing limit

0

2

4

6

8

10

12

14

358 360 362 364 366 368 370 372 374 376 378
50% Burn Point [°CA aTDC]

R
in

g
in

g
 In

te
n

si
ty

 [M
W

/m
2] Phi = 0.30

Phi = 0.34

Phi = 0.38
Phi = 0.40

Phi = 0.42

Ringing limit

 Nat. TS in the bulk gas significantly 
slows the combustion rate.

 High-load op. still limited by knock.

 Retarding combustion phasing 
reduces PRR & ringing intensity. 

 Allows higher fueling.

Retarded Combustion Allows Higher Loads
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Benefit of CA50 Retard is Related to Thermal Strat.

 Initially thought that colder 
temperatures slow kinetic rates.
– Does not explain experimental data.

 Add simulation of TS with multi-
zone Senkin.
– Zones independent except for 

compression heating.
– Adjust “thermal-width” to match 

the experimental maximum PRR.

 Changes in PRR with phasing  
are reproduced well by model.
– Greater time delay between 

sequentially cooler zones.

– Due to larger combustion-chamber 
volume and faster expansion rate.
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 Retarded timing amplifies the 
benefit of a given stratification. 

Iso-octane,  = 0.38

Sjöberg et al., SAE 2005-01-0113
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Pre-Ignition Heat Release

 Allowable CA50 retard limited by 
combustion stability.
– Must maintain positive temperature 

rise rate (TRR) before hot ignition.
– Lack of sufficient TRR causes 

combustion to become unstable 
and eventually misfire. 

 Fuels with stronger ITHR, e.g. 
PRF80, produce higher TRR.
– Can sustain more CA50 retard. 

Combustion Retard Relies on ITHR 

Sjöberg and Dec, Proc. Combst. Inst. 2007
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combustion stability.
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rise rate (TRR) before hot ignition.
– Lack of sufficient TRR causes 

combustion to become unstable 
and eventually misfire. 

 Fuels with stronger ITHR, e.g. 
PRF80, produce higher TRR.
– Can sustain more CA50 retard. 
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More retarded CA50 with Good 
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Intake Boosting Enhances ITHR of Gasoline

 Intake-pressure boosting enhances 
the ITHR of gasoline.
– Remains as single-stage ignition.
– Allows considerable CA50 retard with 

good stability.

 For Pin = 200 kPa, CA50 retard can 
be > 379°CA. 
– 6°CA more than for Pin = 100 kPa.
– Allows significantly higher IMEPg.

 As a result, very high loads can be 
reached with boosted gasoline HCCI.
– IMEPg = 16.3 bar at Pin = 325 kPa.
– Limited by cylinder head ~160 bar.
– Approaching loads of conventional 

diesel engines.

 Enhanced ITHR with boost is the 
key to high-load operation with 
premixed fueling, using gasoline.
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Can Biofuels Give Similar Performance?

 Iso-pentanol is a next-generation 
biofuel  process developed by JBEI.

 Iso-pentanol shows gasoline-like 
ITHR, naturally aspirated.
– Greater than ethanol.

 ITHR of iso-pentanol is significantly 
enhanced by boost, similar to gasoline.
– Provides good stability with significant 

timing retard.

 Allows a substantial increase in load 
with boost  like gasoline.
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 Iso-pentanol closely matches gasoline 
performance  good compatibility.

Yang et al. SAE 2010-01-2164
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Ethanol 

Can Biofuels Give Similar Performance?

 Iso-pentanol is a next-generation 
biofuel  process developed by JBEI.

 Iso-pentanol shows gasoline-like 
ITHR, naturally aspirated.
– Greater than ethanol.

 ITHR of iso-pentanol is significantly 
enhanced by boost, similar to gasoline.
– Provides good stability with significant 

timing retard.

 Allows a substantial increase in load 
with boost  like gasoline.

 Ethanol shows no enhancement 
in ITHR with boost.
– Not as good for high-load HCCI.
– Likely more knock resistance for 

boosted SI operation.
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 Engine compatibility must be considered in developing new biofuels/blends.

Iso-Pentanol and Ethanol Isopentanol Yang et al. SAE 2010-01-2164
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-Sensitivity of Gasoline and ITHR

 Use Fire19/1 technique to isolate fuel-
chemistry effects from thermal effects.
– Dec & Sjöberg SAE 2004-01-0557.

 PRF73  strong -sensitivity
– Autoignition timing significantly 

advanced by higher .
– Chemical reaction rates promoted by 

higher fuel concentration.

 Pin = 1 bar  gasoline not -sensitive.
– Retards due to cooling effect of  .

 -Sensitivity of gasoline increases 
greatly from Pin = 1 to 2 bar.
– Correlates with the increase in ITHR.
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 High -sensitivity of gasoline with boost offers the possibility of using 
mixture stratification to reduce the HRR and allow higher loads.
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Acquired cycle ITHR correlates with -sensitivity over 
a range of fuels and op. conditions

Dec and Yang SAE 2011-01-0897
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Controlling the HRR with Mixture Stratification

 Potential to reduce HRR beyond TS  Higher loads & Higher efficiency.

 Two requirements must be met for mixture stratification to be effective:
1) -Sensitive Fuel 2) Appropriate -Distribution

Dec and Sjöberg, SAE 2004-01-0557

 PRF80 is strongly -sensitive (high ITHR), iso-octane is not (weak ITHR)

 Partial fuel stratification (PFS)  most fuel premixed, up to 20% late DI.
1. Provides sufficient stratification.
2. Good air utilization with leanest regions burning hot enough for good comb. 

Sjöberg and Dec, SAE 2006-01-0629
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Advantages of PFS for Boosted Gasoline, Pin = 2 bar  

 Increase PFS by increasing the DI%.
– Greatly reduces HRR, PRR and ringing.

 PFS allows significantly higher loads.
– PFS  IMEPg = 13.0 bar, m = 0.54
– Premixed  IMEPg = 11.7 bar, m = 0.47
– Approaching O2 availability limit (0.9%).

 Thermal Eff. is higher for the same load.
– More advanced CA50.
– Lower ringing  less heat loss (& quieter).

 Ultra-low NOx and soot.

 Using PFS to exploit -sensitivity 
provides substantial advantages.

 Important to understand chemistry 
responsible for this behavior.
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Summary and Conclusions

 Advanced low-temperature compression-ignition engines such as HCCI 
offer substantial advantages for high-efficiency, low emiss. & moderate cost.

 Early autoignition chemistry is critical for the operation of these engines. 
– LTHR  760 < T < 870 K
– ITHR  900 < T < 1050 K

 ITHR varies significantly with fuel type even when no LTHR is present.

 Magnitude of the ITHR is critical for allowing sufficient combustion-phasing 
retard to prevent engine knock  retard amplifies the benefit of natural TS.
– ITHR must be sufficient to keep a positive TRR during the early expansion.

 Intake boosting greatly increases the ITHR of gasoline allowing very high 
loads without knock and with good stability  up to IMEPg = 16.3 bar.
– Enhanced ITHR also found with the biofuel iso-pentanol, but not with ethanol.

 Amount of ITHR also appears to correlate with the -sensitivity of the fuel. 
– -Sensitivity allows the use of PFS to significantly reduce the HRR & PRR.
– Provides higher loads and higher efficiencies.

 A more complete understanding of I-T chemistry at engine conds. is needed


