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Motivation

e Global demand for transportation fuels is increasing rapidly.
— New discoveries of petroleum are not keeping pace.

e Global temperatures are rising.
— CO, from transportation is a major contributor to GHG.

e Strong motivation to reduce petroleum consumption.

e Engine-efficiency improvements offer a huge potential !
— Could be implemented in a relatively short time.

e Advanced biofuels or other renewable fuels = import
— Substantial discussion is beyond the scope of trl of
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Improving Vehicle-Fleet Efficiency @

e Diesel engine is the most efficient transportation engine ever developed.
— Potential fuel savings of ~30% over spark-ignition (Sl) engines.

e Drawbacks to diesel engines:
— Diesel emissions control is challenging = requires expensive aftertreatment.

— Cost of a diesel is significantly higher than Sl + expensive aftertreatment +
demand is driving up fuel costs.
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e Looking to the future, the vast
majority of new vehicles added
will be in the developing world.
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e For high-efficiency vehicles to have a large impact, it is important that
the technology be economical. = Particularly for the developing world.

e For full utilization of crude oil stocks = desirable to have a high-
efficiency engine fueled with “light-end” distillates, e.g. gasoline.




Advanced High-Efficiency Engines @

e Advanced engines using HCCI or HCCI-like combustion can provide both
diesel-like or higher efficiencies and ultra-low emissions of NO, and soot.

— Potential for significantly lower cost than an emissions-compliant diesel.
— More-volatile, light-end fuels are well suited for HCCI.
— HCCI can also work well with biofuels and biofuel/gasoline blends.

e HCCI = dilute premixed charge and compression ignition.
— Volumetric flameless combustion.
— Never truly homogeneous due to natural thermal stratification (TS).

— Also advantages to adding limited mixture stratification at some conditions
= partial fuel stratification (PFS).
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— Controlling start of combustion

— Extending operation to higher u{’ NJ\ I[F

loads

e Fuel autoignition chemistry is
critical for both.

e Other low-T, HCCI-like concepts
also show promise (PCCI or RCCI).

Low-Temperature Combustion:
Ultra-Low Emissions (<1900K)



Low-Temperature Combustion Modes @

e HCCI is the most fundamental low-temperature combustion process and the
first to be widely investigated.

— High Efficiencies = Relatively high CR = 12 — 16, no throttle, reduced heat
losses due to low burned-gas temperatures, and higher y (depends on EGR).

— Ultra-low NOx = Lean or dilute with EGR so combustion temperatures < 1900 K
— Ultra-low soot = Well mixed

e Other low-T combustion modes rely on these same principles.
— PPC, PPCI or PCCI = originally developed to achieve HCCI-like combustion in
diesel engines. DI fueling ~60° bTDC diesel fuel vap. & “premixed enough.”
> Still widely used with diesel fuel for low emissions at lower load = in production.

> Recently adapted to gasoline fueling as in the Lund work = better for high loads,
but difficulties = e.g. soot, and RON 70 gasoline = new fuel to the marketplace.

— RCCI = new concept recently introduced by Reitz et al. = improves control and
shows promise, but requires two fuels.

e HCCI is relatively well developed = GM has prototype cars operating in
HCCI mode from idle — 70 mph, using regular pump gasoline (87 octane).

— Controls = cam phasers, GDI fueling & Spark-Assist (SACI), significant strides.
— Combustion efficiencies > 96%, typically 98 — 99% for higher loads.

e Active research on these low-T modes & autoig. chemistry important for all.




Sandia Dual-Engine HCCI Engine Laboratory @

e Matching all-metal & optical HCCI research engines.
— Single-cylinder conversion from Cummins B-series diesel.

— Open combustion chamber.
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e Bore x Stroke =102 x 120 mm

e 0.98 liters, CR=14
I:)TDC-motored =30 — 100 bar




Nature of HCCI Combustion @

e Ignition timing is mainly controlled by fuel autoignition chemistry.
— Heat release prior to hot autoignition is kinetically controlled (LTHR, and ITHR).
— Adjustment of operating parameters required to control ignition timing.

e Main combustion HRR is primarily controlled by thermal stratification.
— TS occurs naturally due to heat transfer and imperfect mixing with hot residuals.

— TS causes sequential autoignition & combustion of the in-cylinder charge.
> Crucial for controlling HCCI HRR for fully premixed combustion.

— High-T combustion kinetics are rapid.

Chemiluminescence of HCCI
(iso-octane, ¢ = 0.24, fully premixed)

AUTOIGNITION
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KINETICALLY CONTROLLED THERMALLY CONTROLLED

Fuel autoignition kinetics control
ignition timing, and pre-igntion heat
release, i.e. LTHR & ITHR.

Thermal stratification usually
controls HRR of main
combustion.
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Ignition Chemistry Changes with Fuel-Type @

e Intake temperature (T;,) required for =~ CA50=TDC, Fully Premixed, 1200 rpm
a given combustion phasing varies 200
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[Hwang, Dec & Sjoberg, Combst. & Flame 154(3), 2008




Intermediate Temp. Heat Release (ITHR) (W)
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Intermediate Temp. Heat Release (ITHR)

e For all fuels, slower ITHR reactions
precede hot ignition (= CA10).

—900<T<1050K

e For many single-stage fuels, trends
are self-similar, T, varies with T,..

— T,, varies significantly with fuel-type.

e However, DIB (diisobutylene) has
more intense ITHR reactions.

e Also, for two-stage PRF80, ITHR
reactions more intense after LTHR.

— Note that HRR never goes to zero
after LTHR ends.

e Examine the effects of ITHR In
more detail for iso-octane (single-
stage) and PRF80 (two-stage)

Mass-Avg. Temperature [K]

Mass-Avg. Temperatu

e e
o N b
O O O
S O O

800
600
400
200
0
-200

—iso-Octane

348 350 352 354 356 358 360 362

Crank Angle [°CA]

|
4 —iso-Octane |
|

,,,,,,,,,,,,,,,,,,,,,,,,,

7777777777777777777777777777777777777777777

————————————————————————————————————————————

335 340 345 350 355 360 365 370 375 380

Crank Angle [°CA]

[Hwang, Dec & Sjoberg, Combst. & Flame 154(3), 2008

Heat-Release Rate [J/°CA]



Retarded Combustion Allows Higher Loads

()

e Nat. TS in the bulk gas significantly

sl
o H

ows the combustion rate.

iIgh-load op. still limited by knock.

e Retarding combustion phasing
reduces PRR & ringing intensity.

e Allows higher fueling.

e \Why does timing retard slow PRR?
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Benefit of CA50 Retard is Related to Thermal Strat. @

— Exp,. Thdc =401.5 K

e |nitially thought that colder _80 - | —Exp,. Thdc = 398.6 K
. . — l Exp., Tbdc =396.9 K
temperatures slow kinetic rates. S 7o - | Zxp. Todo - 3955 K

. | —5-Z, Thdc,max = 402 K
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e Add simulation of TS with multi-
zone SenkKin.

— Zones independent except for
compression heating.

— Adjust “thermal-width” to match
the experimental maximum PRR.

Iso-octane, ¢ = 0.38
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e Changes in PRR with phasing
are reproduced well by model.

— Greater time delay between
sequentially cooler zones.

— Due to larger combustion-chamber
volume and faster expansion rate.
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Combustion Retard Relies on ITHR

e Allowable CAS50 retard limited by

HRR / tot HR [J/°CA]

combustion stability.

— Must maintain positive temperature

rise rate (TRR) before hot ignition.

— Lack of sufficient TRR causes

combustion to become unstable

and eventually misfire.

Fuels with stronger ITHR, e.g.
PRF80, produce higher TRR.

— Can sustain more CAS50 retard.
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Combustion Retard Relies on ITHR @
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Intake Boosting Enhances ITHR of Gasoline @

e Intake-pressure boosting enhances O T en-a0rpatinzeoc | |
: — Pin = 160 kPa, Tin = 74°C || l 1 1
the ITHR of gasoline. - 00084 e mmowose | |\
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Can Biofuels Give Similar Performance?

@)

Iso-Pentanol and Ethanol

Isopentanol
OH

[Yang et al. SAE 2010-01-2164 |

Iso-pentanol is a next-generation
biofuel = process developed by JBEI.

|so-pentanol shows gasoline-like
ITHR, naturally aspirated.

— Greater than ethanol.

ITHR of iso-pentanol is significantly
enhanced by boost, similar to gasoline.

— Provides good stability with significant
timing retard.

Allows a substantial increase in load
with boost = like gasoline.

|so-pentanol closely matches gasoline

performance = good compatibility.
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Can Biofuels Give Similar Performance? @

Iso-Pentanol and Ethanol Manol [Yang et al. SAE 2010-01-2164 |
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e Engine compatibility must be considered in developing new biofuels/blends.




®d-Sensitivity of Gasoline and ITHR

®)

e Use Firel9/1 technique to isolate fuel- ,, .
chemistry effects from thermal effects. ;.| « A  |Pnvaries| ..
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e High ¢-sensitivity of gasoline with boost offers the possibility of using

mixture stratification to reduce the HRR and allow higher loads.




Controlling the HRR with Mixture Stratification @

e Potential to reduce HRR beyond TS = Higher loads & Higher efficiency.

e Two requirements must be met for mixture stratification to be effective:

1) ¢-Sensitive Fuel 2) Appropriate ¢-Distribution
365 T— ‘ ‘ Fire F19/1-Experiment
Yy T N Const. Wall and Residual Temp. Fully Premixed
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Sjoberg and Dec, SAE 2006-01-0629
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e PRF80 is strongly ¢-sensitive (high ITHR), iso-octane is not (weak ITHR)

e Partial fuel stratification (PFS) = most fuel premixed, up to 20% late DI.
1. Provides sufficient stratification.
2. Good air utilization with leanest regions burning hot enough for good comb.



Advantages of PFS for Boosted Gasoline, P,, = 2 bar @

e Increase PFS by increasing the DI%.
— Greatly reduces HRR, PRR and ringing.

e PFS allows significantly higher loads.

e Thermal Eff. is higher for the same load. 500 -

— PES = IMEP, = 13.0 bar, ¢, = 0.54

— Premixed = IMEPg = 11.7 bar, ¢, = 0.47
— Approaching O, availability limit (0.9%).

— More advanced CASO.
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— Lower rlnglng = less heat loss (& quieter). 2
T nd

Indicated Thermal Eff. [%)]
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e Ultra-low NOx and soot.

e Using PFS to exploit ¢-sensitivity
provides substantial advantages.

e |Important to understand chemistry
responsible for this behavior.




Summary and Conclusions @

e Advanced low-temperature compression-ignition engines such as HCCI
offer substantial advantages for high-efficiency, low emiss. & moderate cost.

e Early autoignition chemistry is critical for the operation of these engines.
— LTHR = 760 < T <870 K
— ITHR=900<T<1050K

e ITHR varies significantly with fuel type even when no LTHR is present.

e Magnitude of the ITHR is critical for allowing sufficient combustion-phasing
retard to prevent engine knock = retard amplifies the benefit of natural TS.

— ITHR must be sufficient to keep a positive TRR during the early expansion.

e Intake boosting greatly increases the ITHR of gasoline allowing very high
loads without knock and with good stability = up to IMEP, = 16.3 bar.

— Enhanced ITHR also found with the biofuel iso-pentanol, but not with ethanol.

e Amount of ITHR also appears to correlate with the ¢-sensitivity of the fuel.
— ¢-Sensitivity allows the use of PFS to significantly reduce the HRR & PRR.
— Provides higher loads and higher efficiencies.

e A more complete understanding of I-T chemistry at engine conds. is needed



