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Overview



High-Pressure 

Shock Tube Capabilities



High-Pressure Shock-Tube Facility

• 1 – 100 atm Capability

• 600 – 4000 K Test Temperature

• Up to 20 ms Test Time

• 2.46 m Driver and 4.72 m Driven

• 15.24 cm Driven Inner Diameter

Time-Interval Measurement

Vacuum System

Driven Section (4.72 m) Driver Section (2.46 m)

Expansion Section / 

Diaphragm Location
Access PortWeldless Flange

Shock Tubes



Low-Pressure Shock-Tube Facility is also Utilized

TAMU Low Pressure Shock-Tube Facility

• 4 x 4 in Cross Sectional Driven Area
•1 – 10 atm Capability
• 1-2 ms Test Time
• 6.1 m Length
• Heating Capability

Shock Tubes



Second High-Pressure Shock Tube Located at Aerospace Corp.

Aerospace High Pressure Shock-Tube Facility

• 1 – 100 atm Capability
• 600 – 4000 K Test Temperature
• 3 ms Test Time
• 3.5 m Driver and 10.7 m Driven Sections
• 16.2 cm Driven Inner Diameter

Shock Tubes



Ignition Delay Time from Pressure, Emission

Endwall Pressure Trace 

for long test time

Endwall Pressure Trace 

For typical test time
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Recent and On-Going Studies



1. C1 – C4 Ignition Delay Times

2. Pentane Experiments

3. Hydrogen and Syngas Experiments

4. Syngas with Impurities

Recent Studies



Recent Experiments and Modeling:

 Real Fuel-Air Mixtures at High Pressures
 1 – 50 atm
 Shock Tube and RCM Temperatures

Validated with:

 CH4, C2H6, C3H8

 CH4/C3H8, CH4/C2H6,
CH4/H2, CH4/C2H6/C3H8

 CH4/C2H6/C3H8/C4H10/C5H12

 CH4/DME, DME
 C4H10, iC4H10
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New Experiments are Focusing on Pentane Mixtures

Pentane
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High-Pressure Experiments in H2-O2 Mixtures Show

Good Agreement with Mechanism

H2 and Syngas
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Effect of NO2 on H2-O2 Mixtures is Being Studied

Syngas with Impurities

1.5 atm

30 atm



Chemiluminescence



Emission and Pressure Measured from Endwall and Sidewall

Chemiluminescence
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We Have Working Kinetics Models for OH*, CH* at 1 atm, 

But Not at Elevated Pressures

Chemiluminescence

Formation of CH*:

C2H + O = CO + CH*
C2 + OH = CO + CH* 
C + H + M = CH* + M

Depletion of CH*:

CH* = CH + hn
CH* + M = CH + M

Formation of OH*:

CH + O2 = CO + OH*
O + H + M = OH* + M

Depletion of OH*:

OH* = OH + hn
OH* + M = OH + M

Hall and Petersen, IJCK (2006)
Hall and Petersen, AIAA 2004-4164
Petersen et al., AIAA 2003-4493

Hall et al., AIAA 2005-1318
de Vries et al., Co&Fl (2007)



Typical OH* Time History at Dilute Conditions
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Chemiluminescence



Current Model Overpredicts OH* at Elevated Pressures

OH* Results
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Improved Model Results

Using new pressure dependent  reaction rate.
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Experimental Peak Concentration of CH* is Accurately

Predicted by Model at Low and High Pressure

CH* Results
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Chemiluminescence

Possible Controversy Over Background Emission 

Base Image courtesy of Sattelmayer et al.

CO2*  or   CH2O*, HCO*?
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Can be Used as Tuning Parameters for Model Improvement

 = 2.0, 1.5 atm
0.10% n-C9H20 + 0.70% O2 + 99.2% Ar

OH* Kinetics Present Near Time-Zero

Ignition Peak

Incipient Peak

Objective 1: Improve OH* Incipient Peak-to-
Ignition Peak Ratio

Objective 2: Improve Time-Dependent 
OH* Kinetics (i.e. Profile Width)

Chemiluminescence



 = 2.0, 1.5 atm, 1555 K, 0.10% n-C9H20 + 0.70% O2 + 99.2% Ar

Relative Peak Magnitude Insensitive to
Change in Reaction Rate of Primary OH*
Production Channel:

CH + O2 → OH* + CO

Negligible Reduction of Incipient OH* from
Increased Rate of De-excitation by Ar:

OH* + Ar → OH + Ar

Incipient Oxidation Insensitive to Primary Chemilum. Reactions

0 200 400 600 800 1000
0.1

1

10

100

 k
 10·k
 k/10

k

 

 

O
H

* 
M

ol
e 

Fr
ac

tio
n 

(N
or

m
al

iz
ed

)
Time (s)

CH + O
2
  OH* + CO

0 20 40 60 80 100

0.1

1

10

100

 k
 1000·k

 

 

O
H

* 
M

ol
e 

Fr
ac

tio
n 

(N
or

m
al

iz
ed

)

Time (s)

k
OH* + Ar  OH + Ar

Chemiluminescence



Incipient Reactions Leading Toward Model Improvement

Methyl production: n-C9H20 → C8H17 + CH3 sCH2 + H2 → CH3 + H 

Methylene production: CH3 + OH → CH2 + H2O CH3 + H → CH2 + H2

Methylidyne production: CH2 + H → CH + H2

OH* production: CH + O2 → OH* + CO 
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Fuel-Rich ( = 2.0) OH Chemiluminescence Profile Comparison

 = 2.0; 0.1% n-C9H20, 0.7% O2, 99.2% Ar
T = 1555 K, P = 1.5 atm

Present Model Prediction of OH* 
Compared to Experimental Profile

Initial Model Prediction of OH* Compared 
to Experimental Profile
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Fuel-Rich ( = 2.0) OH Chemiluminescence Profile Comparison

 = 2.0; 0.1% n-C9H20, 0.7% O2, 99.2% Ar
T = 1412 K, P = 1.5 atm

Present Model Prediction of OH* 
Compared to Experimental Profile

Initial Model Prediction of OH* Compared 
to Experimental Profile
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Challenges and Future Efforts



1. Non-Ideal and Non-Homogeneous Effects

2. Aerosol Shock Tube

3. Laser Measurements at Elevated Pressure

4. Other?

Challenges

There are Some Challenge Areas for Future High-

Pressure Shock Tube Experiments
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• Clear offset from shock-
tube data at T < 1100 K

• Data from different shock
tubes tend to agree

• RCM data agree with model
at lower temperatures

• Further analysis is needed

Non-Homogeneous Effects

C3H8/Air Data - Discrepancy between Model and Shock Tube 



1. Boundary Layer Effects  ⇨  Gradual Increase in P

2. Compression Due to Non-Homogeneous Reaction
⇨ Marked Increase in Pressure

Non-Homogeneous Effects

Non-Ideal Pressure Rise Can Come from 2 Sources



Key to the Discrepancy Lies in Observed Pressure Trace
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Early Reactivity 

Leading to Pressure Rise

Non-Homogeneous Effects



Long-Time Pressure Behavior for Delayed Early Reaction

Extreme Pressure rise before ignition is not from facility-induced 

boundary layer effects
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Imposing Pressure Trace on Kinetics Mechanism

Apply Smoothing and Remove Ignition Feature
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Model Results with P-Profile

Excellent Agreement Found with Imposed P-Profile

Non-Homogeneous Effects



• Longer Test Times with Negligible (BL) Pressure Rise

• Sources of Early, Non-Homogeneous Ignition?

• Can We Extend Shock Tube to RCM Conditions?

Non-Homogeneous Effects

Challenges for Future Progress in Reactive, High-

Pressure Shock Tube Experiments



Aerosol Shock Tube Method of Heavy Hydrocarbon Combustion 

Aerosol Shock Tube

Heterogeneous Shock Tube Experiment 
(Gaseous Oxidizer, Liquid Fuel)

Uniform Fuel/Air Aerosol

Related Issues using Aerosol Approach:

 Requires Narrow Size Distribution

 Small-Diameter Droplets Necessary

 in situ Measurement of [Fuel]

 Low Mass Loading

 Concern Over Endwall Fuel-Film Deposition

Endwall



Uniform Fuel/Air Aerosol

Related Issues using Aerosol Approach:

 Requires Narrow Size Distribution

 Small-Diameter Droplets Necessary

 in situ Measurement of [Fuel]

 Low Mass Loading

 Concern Over Endwall Fuel-Film Deposition

Endwall

Condensed Fuel Evaporates from High 
Temperature Created by Shock Wave

Incident Shock Rapidly 

Evaporates Small Droplets

Aerosol Shock Tube Method of Heavy Hydrocarbon Combustion 

Aerosol Shock Tube



Evaporated Fuel 
(Gas-Phase Reactants)

Related Issues using Aerosol Approach:

 Requires Narrow Size Distribution

 Small-Diameter Droplets Necessary

 in situ Measurement of [Fuel]

 Low Mass Loading

 Concern Over Endwall Fuel-Film Deposition

Endwall

Heterogeneous Experiment becomes 
Traditional Shock Tube Experiment

Aerosol Shock Tube Method of Heavy Hydrocarbon Combustion 

Aerosol Shock Tube



• Test-to-Test Repeatability

• Homogeneous Dispersion of Condensed Phase

• Certainty on Test Conditions and Concentrations

• Impact of Particle Size Distribution

Aerosol Shock Tube

Challenges for Future Progress in Aerosol Shock Tubes



• Isolation of Noise Sources (windows, turbulence, etc.)

• Increased Signal-to-Noise Ratio Needed

• Certainty on Test Conditions and Concentrations

Laser Measurements

Challenges for Future Progress in Laser Absorption 

Measurements at Elevated Pressure
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